Introduction to Linear Regression Analysis

Samuel Nocito

Collegio Carlo Alberto

UNIVERSITÀ DEGLI STUDI DI TORINO

Lecture 1

March 2nd, 2018

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Econometrics: What is it?

- Interaction of economic theory, observed data and statistical methods.
- The science of testing economic theory.
- The application of statistical techniques for solving empirical problems.
- The set of tools used either for predicting future variables (prices, demographic trends, etc.) or for phenomenon estimation.
- The science of using data to make quantitative inference for policy recommendations.

Econometrics: Why do we need it?

- Is there gender discrimination in the labor market (wage gender gap)?
- How much can "carbon tax" reduce the use of fossil fuels? Is there racial discrimination in the market for home loans? What is the economic return of education?
- What will the life expectancy at birth be in the next 20 years?

Broad questions:

- (A) Who chooses to migrate?
 -) Impact of personal characteristics.
- (B) Why do people migrate to di erent countries?
 - Push and pull factors.
- (C) What is the impact of emigration?
 -) E ect on the country of origin.
- (D) What is the impact of immigration?
 -) E ect on the host country.

Speci c questions (examples):

- Does foreign language pro ciency foster migration of young individual within the European Union? (Aparicio Fenoll and Kuehn, 2016)
 - \Rightarrow Point (A) "broad questions".
- Do immigrants cause crime? (Bianchi et al., 2012)
 ⇒ Point (D) "broad questions".

- e Linear Regression model: Ordinary Least Squares (OLS)
- Non Linear Regression Models:
 -) Maximum Likelihood Estimation (MLE)
 -) Probit, Logit, Tobit
- Di erences-in-Dierences
- e Instrumental Variable Estimation (IV)

Principal Econometrics Methods in the Literature

	1995-1999	2000-2004	2005-2009
Number of papers	31	40	51
By empirical technique			
OLS	14	11	20
MLE, Probit, Logit, Tobit	3	9	9
Di erences-in-Di erences	1	2	0
Instrumental Variable	4	12	8
Others	9	6	14
By topic			
Assimilation	14	17	14
Immigrants selection	6	7	8
Native outcome	8	9	12
Others	3	7	12

American Economic Review, Quarterly Journal of Economics, Journal of Politfeature Economy, Journal of Labour Economics, and others top journals. Source: Sona Kalataryan, Methodological Workshop, MPC (EUI) 2016.

Migration in Europe

A D N A B N A B N A B N

Principal Econometrics Methods: We focus on

e Ordinary Least Squares (OLS)

-) Simple mathematical and graphical explanation
-) Practical examples
-) Interpretation of results
- Instrumental Variable (IV)
 -) Very short introduction on the topic
 -) Correlation vs causality
 -) Interpretation of results (OLS vs IV)
 -) Tackled in lecture 2

Suppose we have a sample of N observations on individual wages and personal characteristics:

	у	X	
i	Wage	Age	Gender
1	6	18	М
2	5	18	F
3	5.8	20	F
N	69	. 22	M
14	0.7	22	101

US National Longitudinal Survey (NLS) of 1987 (Example).

N=3294 young working individuals, 1569 females.

Hourly wage rates. Males average 6.31, females 5.15.

We want to answer: how in this sample wages are related to other observables?

OLS general equation:

$$y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

In our empirical case:

$$Wage_i = \beta_0 + \beta_1 ttender_i + \varepsilon_i$$

Where:

- y_i (individual wage): dependent variable (explained)
- xi (gender): independent variable(explanatory)
- \mathcal{E}_i : is the error term

 $y_i = \beta_0 + \beta_1 X_i$ is a linear equation model where

- β_0 is the intercept of the curve
- β_1 is the slope of the curve

In the empirical case:

Figure: Fitted line and observation points (Verbeek, Fig. 2.1)

Figure: Linear Regression Example: Height and Age (months)

- e blue dots: observed data (combinations of height and age or and a geogrammeter and a ge
- blue line: OLS linear equation.
- red arrow: error term \mathcal{E}_i .

Migration in Europe

of the European Union

- We observe x and y.
- We want to estimate β_0 and β_1 to understand the relation between x and y.
- The distance between the dot and the line is the error term ε_i of the OLS.
- e We want to minimize the error term.

Formally:

$$y_i = \beta_0 + \beta_1 X_i + \varepsilon_i \quad \Leftrightarrow \quad \varepsilon_i = y_i - \beta_0 - \beta_1 X_i$$

where ε_i is the error term.

In particular we want to minimize:

$$\sum_{\substack{N\\i=1}} \xi^2 = \sum_{\substack{N\\i=1}}^{\infty} (y_i - \beta_0 - \beta_1 X_i)^2$$

Remark: we use the quadratic transformation to avoid issues with the sign of the error term.

In the case with one regressor (i.e., gender) and a constant., the solutions of β_0 and β_1 that minimize the error are:

$$\beta_0 = \overline{y} - \beta_1 \overline{x}$$

$$\beta_1 = \frac{Cov(x,y)}{Var(x)}$$

Where:

- \overline{y} is the sample average of the y_i .
- \overline{x} is the sample average of the x_i .
- Cov(x, y) is the sample covariance between x and y.
- Var(x) is the sample variance of x.

The intercept (β_0) is determined to make the average error β_0 is determined to make the average error β_0

・ロト ・西ト ・ヨト ・ヨト

э

OLS: Application to the Wage Example

We create the variable *Male* using the information of gender (dummy variable).

	у		Х	
i	Wage	Age	Gender	Male
1	6	18	М	1
2	5	18	F	0
3	5.8	20	F	0
N	6.9	22	M	1

We use OLS to estimate:

$$Wage_i = \beta_0 + \beta_1 Male_i + \varepsilon_i$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

OLS: Application to the Wage Example

Table: OLS results wage equation (Verbeek, tab. 2.1)

Dependent	variable: wage	
Variable	Estimate	Standard Error
Constant	5.1469	0.0812
Male	1.1661	0.1122
	$R^2 = 0.0317$	F=107.93

 $Wage_i = 5.15 + 1.17 Male_i$

$$\beta_0 = 5.15 \text{ and } \beta_1 = 1.17$$

- $\beta_1 = 1.17$ means that males receive 1.17 dollar per hour more than females.
- Standard errors show the error in the estimate of the coe cient (the smaller the better!).
- $R^2 = 0.0317$ means that approximately 3.2% of the variation in individual wages is given to gender di erences.

OLS: Application to the Wage Example

Figure: Graphical Representation of the Standard Errors (example)

Suppose each dot is a coe cient estimate:

- The standard error shows the interval in which the coe cient lies.
- The smaller is the interval the higher is the precision of the estimate.

e Dependent Variable and Explanatory variables

-) How to interpret coe cient estimates with di erent variable de nitions.
-) Analysis of an empirical paper results.
-) OLS issues.
- e Correlation vs causality
 -) Short introduction to IV estimates (conceptual).
 -) Comparison of results (OLS vs IV) of an empirical paper.

• Marno Verbeek, A Guide to Modern Econometrics, 3rd Ed., Wiley, 2008, Chapter 2, pp. 6-31.

- Suggested (not used in class):
 -) Stock, James H., and Mark W. Watson, Introduction to Econometrics, Global Edition, MA: Pearson Education, 2012.

